A semi-classical Thomas-Fermi model to tune the metallicity of electrodes in classical simulations

Laura Scalfi, Benjamin Rotenberg

PHysicochimie des Electrolytes et Nanosystèmes InterfaciauX – PHENIX Sorbonne Université

HPC School on Quantum Computational Material Science

18/11/2020

Scalfi L. (PHENIX - SU)

Thomas-Fermi in classical MD

18/11/2020 1/25

- Constant potential simulations
- Applications
- Highlight on charge fluctuations with BO sampling

How to model non-ideal metals?

- The Thomas-Fermi model
- Effect of metallicity on electrolyte properties
- How to study the influence of metallicity on confined phase transitions?

• Capacitors used for electric energy storage BMI-PF₆ ionic liquid with graphite electrodes

 Capacitors used for electric energy storage BMI-PF₆ ionic liquid with graphite electrodes

Challenges for molecular simulation

Finite temperature → sampling configurations with MD

 Capacitors used for electric energy storage BMI-PF₆ ionic liquid with graphite electrodes

Challenges for molecular simulation

- Finite temperature → sampling configurations with MD
- Large systems & long times → using classical force fields

 Capacitors used for electric energy storage BMI-PF₆ ionic liquid with graphite electrodes

Challenges for molecular simulation

- Finite temperature \rightarrow sampling configurations with MD
- Large systems & long times \rightarrow using classical force fields
- Metallic interfaces \rightarrow accounting for electronic polarization

Scalfi L. (PHENIX - SU)

Thomas-Fermi in classical MD

 Capacitors used for electric energy storage BMI-PF₆ ionic liquid with graphite electrodes

Statistical Physics encounters Quantum Chemistry

(focusing on the electrolyte side)

Scalfi L. (PHENIX - SU)

Thomas-Fermi in classical MD

18/11/2020 4/25

• How to account for electronic polarization?

Constant potential simulations

Scalfi L. (PHENIX - SU)

Thomas-Fermi in classical MD

• How to account for electronic polarization?

Constant potential simulations

• fluctuating Gaussian charges $\mathbf{q} = \{q_i\}$

• How to account for electronic polarization?

Constant potential simulations

- fluctuating Gaussian charges $\mathbf{q} = \{q_i\}$
- under a constant potential constraint

$$\frac{\partial U}{\partial \mathbf{q}} = \Psi$$

Scalfi L. (PHENIX - SU)

• How to account for electronic polarization?

Constant potential simulations

- fluctuating Gaussian charges $\mathbf{q} = \{q_i\}$
- under a constant potential constraint

$$\frac{\partial U}{\partial \mathbf{q}} = \Psi$$

solved using minimization algorithms

$$\left.\frac{\partial(U-q\Psi)}{\partial \mathbf{q}}\right|_{\mathbf{q}^*}=0$$

 Ψ electric potential vector { Ψ_L ..., Ψ_R ...}

Scalfi L. (PHENIX - SU)

Thomas-Fermi in classical MD

• How to account for electronic polarization?

Constant potential simulations

- fluctuating Gaussian charges $\mathbf{q} = \{q_i\}$
- under a constant potential constraint

$$\frac{\partial U}{\partial \mathbf{q}} = \Psi$$

• solved using a matrix inversion

$$\mathbf{q}^* = \mathbf{A_0}^{-1} (\mathbf{B}(\mathbf{r}^N) + \Psi)$$

 A_0 electrode - electrode interactions matrix B electrode - electrolyte interactions vector Ψ electric potential vector { $\Psi_L..., \Psi_R...$ }

Scalfi L. (PHENIX - SU)

Thomas-Fermi in classical MD

• Induced charges on the surface in response to the external medium

• Induced charges on the surface in response to the external medium

(a) Li⁺ ion

(b) Aqueous NaCl electrolyte

Constant potential simulations

Application: capacitors for blue energy & desalination ^1 $% \left({{\left[{{{\rm{Application}}} \right]}_{\rm{Application}}} \right)$

¹Simoncelli et al., *Physical Review X*, 2018.

Scalfi L. (PHENIX - SU)

Thomas-Fermi in classical MD

Highlight on charge fluctuations with BO sampling

- Differential capacitance $C_{\text{diff}} = \frac{\partial Q}{\partial \Delta \Psi} = \beta \langle \delta Q^2 \rangle$ related to the fluctuations of the total charge on electrodes
- Born-Oppenheimer sampling suppresses some fluctuations
- A need for a correction to the capacitance² (~5%)

2Scalfi et al., Phys. Chem. Chem. Phys. 2020a.Scalfi L. (PHENIX - SU)Thomas-Fermi in classical MD18/11/20209/25

- Constant potential simulations
- Applications
- Highlight on charge fluctuations with BO sampling

How to model non-ideal metals?

- The Thomas-Fermi model
- Effect of metallicity on electrolyte properties
- How to study the influence of metallicity on confined phase transitions?

Experimental measurements

• Confined ionic liquid freezing (L. Bocquet, ENS)³

Effect of metallicity on electrolyte properties

³Comtet et al., *Nature Materials*, 2017.

Scalfi L. (PHENIX - SU)

Thomas-Fermi in classical MD

18/11/2020 11/25

Experimental measurements

• Confined ionic liquid freezing (L. Bocquet, ENS)³

Effect of metallicity on electrolyte properties

 \rightarrow analytical model based on the Thomas-Fermi model

³ Comtet et al., <i>Nature Materials</i> , 2017.		••••	<	⊧ ୬୯୯
Scalfi L. (PHENIX - SU)	Thomas-Fermi in classical MD		18/11/2020	11/25

How to model non-ideal metals? Thomas-Fermi model

• Fluctuating charges on the surface respond to an ion

(a) Perfect metal $I_{TF} = 0.0$ Å.

(b) Thomas-Fermi metal $I_{TF} = 7.5$ Å.

18/11/2020 12/25

How to model non-ideal metals? Thomas-Fermi model

• Fluctuating charges on the surface respond to an ion

(a) Perfect metal $l_{TF} = 0.0$ Å.

(b) Thomas-Fermi metal $I_{TF} = 7.5$ Å.

Characteristic screening length within the material Thomas-Fermi length

A simple description of the electronic structure

- Electronic DFT within Local Density Approximation
- Kinetic energy of the uniform electron gas

$$U_{TF}[n(\mathbf{r})] = \int \frac{3}{10} \frac{\hbar^2}{m_e} (3\pi^2)^{2/3} n(\mathbf{r})^{5/3} \mathrm{d}\mathbf{r}$$

A simple description of the electronic structure

- Electronic DFT within Local Density Approximation
- Kinetic energy of the uniform electron gas

$$U_{TF}[n(\mathbf{r})] = \int \frac{3}{10} \frac{\hbar^2}{m_e} (3\pi^2)^{2/3} n(\mathbf{r})^{5/3} \mathrm{d}\mathbf{r}$$

- Approximate $n(\mathbf{r})$ within Voronoi cells: $n_i = d \left[Z + \frac{q_i}{-e} \right]$
- Assuming $|q_i| \ll Ze$, we expand energy in powers of q_i

$$U_{TF} = \frac{3}{5}M_{s}ZE_{F} - \frac{E_{F}}{e}\sum_{i=1}^{M_{s}}q_{i} + \frac{l_{TF}^{2}d}{2\epsilon_{0}}\sum_{i=1}^{M_{s}}q_{i}^{2}$$

The Thomas-Fermi model

Thomas-Fermi screening length

- $E_F = \hbar^2 k_F^2 / 2m_e$ Fermi level of an electron gas with density Zd
- k_F Fermi wavevector with $k_F^3/3\pi^2 = Zd$

•
$$I_{TF} = \sqrt{\frac{\epsilon_0 \hbar^2 \pi^2}{(m_e e^2 k_F)}}$$
 Thomas-Fermi screening length of the material

Combining with the classical energy and enforcing electroneutrality⁴

$$U_{tot} = U + \frac{3}{5}MZE_F + \frac{l_{TF}^2 d}{2\epsilon_0}\sum_{i=1}^M q_i^2$$

⁴Scalfi et al., J. Chem. Phys. 2020b.

Scalfi L. (PHENIX - SU)

Thomas-Fermi in classical MD

The Thomas-Fermi model

Thomas-Fermi screening length

- $E_F = \hbar^2 k_F^2 / 2m_e$ Fermi level of an electron gas with density Zd
- k_F Fermi wavevector with $k_F^3/3\pi^2 = Zd$

• $I_{TF} = \sqrt{\frac{\epsilon_0 \hbar^2 \pi^2}{(m_e e^2 k_F)}}$ Thomas-Fermi screening length of the material

Combining with the classical energy and enforcing electroneutrality⁴

$$U_{tot} = U + \frac{3}{5}MZE_F + \frac{l_{TF}^2 d}{2\epsilon_0}\sum_{i=1}^M q_i^2$$

In practice

• Quadratic energy in q results in additional diagonal elements in A

 $\bullet\,\,\sim\,$ no extra cost & faster convergence of conjuguate gradient

Screening in an empty capacitor at $\Delta \Psi = 1V$

• Exponentially decaying charge distribution within the metal

Screening in an empty capacitor at $\Delta \Psi = 1V$

• Capacitance of a parallel-plate empty capacitor $C_{\rm ideal} = \epsilon_0/L$

Scalfi L. (PHENIX - SU)

18/11/2020 16/25

Screening in electrochemical cells at $\Delta \Psi = 2V$

• Electric potential in gold electrochemical cells

Scalfi L. (PHENIX - SU)

18/11/2020 17/25

Screening in electrochemical cells at $\Delta \Psi = 2V$

• Capacitance of gold electrochemical cells $C = Q_{tot} / \Delta \Psi$

Screening in electrochemical cells at $\Delta \Psi = 2V$

• Capacitance of gold electrochemical cells $C = Q_{tot}/\Delta \Psi$

Scalfi L. (PHENIX - SU)

18/11/2020 19/25

How to study the influence of metallicity on confined phase transitions?

How to study the influence of metallicity on confined phase transitions?

Compute the surface tension

• surface tension γ_W as a free energy per surface area

$$\gamma_W(I_{TF}) = \frac{F(I_{TF})}{2\mathscr{A}}$$

• free energy difference associated with a change in metallicity using thermodynamic integration $\Delta F(I_{TF})$

How to study the influence of metallicity on confined phase transitions?

Compute the surface tension

• surface tension γ_{W} as a free energy per surface area

$$\gamma_W(I_{TF}) = \frac{F(I_{TF})}{2\mathscr{A}}$$

- free energy difference associated with a change in metallicity using thermodynamic integration $\Delta F(I_{TF})$
- comparison with contact angle measurements using the Young equation

$$\cos(\theta) = \frac{\gamma_{WV} - \gamma_{WL}}{\gamma_{LV}}$$

Change in contact angle

• Drop simulations of contact angles

Scalfi L. (PHENIX - SU)

Thomas-Fermi in classical MD

18/11/2020 21/25

Comparison with thermodynamic integration results at $\Delta \Psi = 0V$

Conclusions

- Improvement of constant potential simulations using a Thomas-Fermi semiclassical model
- Good agreement with analytical results for empty capacitors
- Significant impact on electrolyte and interfacial properties
 - capacitance
 - structure
 - dynamics
 - surface tension...

Conclusions

- Improvement of constant potential simulations using a Thomas-Fermi semiclassical model
- Good agreement with analytical results for empty capacitors
- Significant impact on electrolyte and interfacial properties
 - capacitance
 - structure
 - dynamics
 - surface tension...

Perspectives

- Better predictions of capacitances
- Application to solid-liquid transition for ionic liquids

MetalWalls: A classical molecular dynamics software dedicated to the simulation of electrochemical systems

Abel Marin-Laflèche¹, Matthieu Haefele¹, Laura Scalfi², Alessandro Coretti^{3, 4}, Thomas Dufils², Guillaume Jeanmairet², Stewart K. Reed⁵, Alessandra Serva², Roxanne Berthin², Camille Bacon², Sara Bonella⁴, Benjamin Rotenberg², Paul A. Madden⁶, and Mathieu Salanne^{1, 2}

https://gitlab.com/ampere2/metalwalls

Thomas Dufils Benjamin Rotenberg Mathieu Salanne

Scalfi L. (PHENIX - SU)

Thomas-Fermi in classical MD

18/11/2020 25/25

-

Thomas Dufils Benjamin Rotenberg Mathieu Salanne

Thank you for your attention

Screening in an empty capacitor

• Energy of a single charge between two parallel plates⁵

⁵Kaiser et al., *Faraday Discussions*, 2017.

Screening in electrochemical cells: structure

Screening in electrochemical cells: dynamics

• Autocorrelation function of the total charge

