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Neural network quantum states     

Neural network (NN) can represent probability distributions

In reality they can represent functions … so why not using neural networks to represent
wavefunctions?

Carleo and Troyer (Science 2017) showed that neural networks can be used as a
variational ansatz for many-body quantum systems.
This worked open the field of neural-network quantum states NNQS.

• Why now?
• How are NN used in physics?
• How effective NNQS are?
• What is the main working principle for NNQS?
• What architectures for NNQS?



Neural network quantum states: why now?     

The always more ubiquitous use of NN could not be missed by physicist.
Their effectiveness in daily applications is resounding.

Natural language processing, image recognition, games …

Great progress comes from
- Use of deep networks
- Advances in hardware (GPUs)



Neural network quantum states: how are NN used in physics?     

Guide experiments

Particle physics and cosmology

Recognize phases of matters

Quantum states and processes tomography

Quantum error correction

Finding the ground state of a Hamiltonian

Finding the steady state of an open quantum system

Perform the time-evolution of a quantum system

Accelerate routines

…
Zdeborová, L., and F. Krzakala, Adv. Phys. (2016)  
G Carleo, et al., Reviews of Modern Physics (2019) 



Neural network quantum states: how effective are NN?      

Universal Approximation Theorem -> NN can represent any well-behaved function.
But does it work for the quantum many-body problems we aim to solve?

States described my matrix tensor networks can also be represented by restricted
Boltzmann machines (RBM). Chen et al. PRB 2018

This implies that states that can be well represented with tensor networks (see Guo’s talk), can also
be represented with RBMs.

Restricted Boltzmann machines can represent volume law states. Deng et al. PRX 2017

This implies that there are states which cannot be represented efficiently with tensor networks, but
which can be represented efficiently with RBMs.



Neural network quantum states: how effective are NN?      

Effectiveness varies significantly on the application and how mature it is.

In particle physics they have been applied for a very long time and they are very
effective.
As for neural network quantum states (NNQS), the field is still young and growing



Neural network quantum states: how effective are NN?      

Effectiveness varies significantly on the application and how mature it is.

In particle physics they have been applied for a very long time and they are very
effective.
As for neural network quantum states (NNQS), the field is still young and growing

For groundstate, the best comparison is the study of a J1-J2 frustrated system.
Choo et al., Phys. Rev. B 100, 125124 (2019)     

10x10 sites

In the frustrated region DMRG still 
performs better than any other method. 



Neural network quantum states: how effective are NN?      

Effectiveness varies significantly on the application and how mature it is.

In particle physics they have been applied for a very long time and they are very
effective.
As for neural network quantum states (NNQS), the field is still young and growing

Time evolution in many-body quantum systems.
Carleo and Troyer, Science (2017)     

Solid lines results from NNQS

Transverse field Ising model
comparison to exact results 

Heisenberg model
comparison to DMRG



Variational principle!

Neural network quantum states: what is the main working principle for 
NNQS? 
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Variational principle!

We group all the parameters of the network in the vector θ

Neural network quantum states: what is the main working principle for 
NNQS? 

From the neural 
network. 

Sample 𝐸𝑙𝑜𝑐 from the neural network using 𝑝𝜓 = |𝜓|2

In essence, a variational Monte Carlo method 



Neural network quantum states: what architectures for NNQS? 

Restricted Boltzmann machines

Convolutional neural networks

Recurrent neural networks

… and more … 

and variations … 

Hibat-Allah et al., PRR 2020 

Choo et al., PRB 2019

Carlo and Troyer, Science 2017

Multilayer perceptron

Cai and Liu, PRB 2018



Neural network quantum states: what architectures for NNQS? 

Restricted Boltzmann machines

Convolutional neural networks

Recurrent neural networks

… and more … 

and variations … 

Hibat-Allah et al., PRR 2020 

Choo et al., PRB 2019

Carlo and Troyer, Science 2017

+ optimizers to find the minimum 
e.g. stochastic gradient descent 

+ samplers to sample effectively and efficiently 
e.g. Metropolis-Hastings, Gibbs   

Multilayer perceptron

Cai and Liu, PRB 2018
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Restricted Boltzmann machines

Neural networks can be used as a variational ansatz for many-body quantum systems
(Carleo and Troyer Science 2017).

The first example of NNQS has been Boltzmann machines.

Each node takes 
values -1 or 1 
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Neural networks can be used as a variational ansatz for many-body quantum systems
(Carleo and Troyer Science 2017).

The first example of NNQS has been Boltzmann machines.



Each node takes 
values -1 or 1 Wji

Visible nodes are 
not directly coupled

Hidden nodes are 
not directly coupled

Restricted Boltzmann machines

Neural networks can be used as a variational ansatz for many-body quantum systems
(Carleo and Troyer Science 2017).

The first example of NNQS has been Boltzmann machines.



Each node takes 
values -1 or 1 Wji

Each visible node is 
directly coupled to 
all hidden nodes

Each hidden node is 
directly coupled to 
all visible nodes 

Restricted Boltzmann machines

Neural networks can be used as a variational ansatz for many-body quantum systems
(Carleo and Troyer Science 2017).

The first example of NNQS has been Boltzmann machines.
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Neural networks can be used as a variational ansatz for many-body quantum systems
(Carleo and Troyer Science 2017).

The first example of NNQS has been Boltzmann machines.

Each node takes 
values -1 or 1 Wji

Restricted Boltzmann machines

This is your ansatz for 
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When you know that is real and positive 



Restricted Boltzmann machines

𝑝𝜓 = |𝜓|2

𝜓

When you know that is real and positive 

The content of these two boxes allows you do 
find an approximation for the ground state
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Restricted Boltzmann machines and transfer learning

Singaporean-French collaboration involving SUTD – NUS – Majulab – UCA
with 60% physicists and 40% computer scientists.

Remmy Zen, Long My, Ryan Tan, Frederic Hebert, Mario Gattobigio, Christian Miniatura,
DP, Stephane Bressan

Singapore
France

Zen et al., Physical Review E 2020 



Typically transfer learning is used in scenarios like this:
you have a large number of data to train a neural network (for example many photos of
cats), and a small amount of data for a different but similar problem (e.g. photos of
dogs). Then you can first train the network first with the data and refine it with the
cats.
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Typically transfer learning is used in scenarios like this:
you have a large number of data to train a neural network (for example many photos of
cats), and a small amount of data for a different but similar problem (e.g. photos of
dogs). Then you can first train the network first with the data and refine it with the
cats.

We can extend this to problem in quantum physics and also beyond supervised learning.

Restricted Boltzmann machines and transfer learning



Here we aim to work similarly:

- Train a network for a system of a certain size

- Transfer the weights of the network to another network for the description of a larger
system.

Restricted Boltzmann machines and transfer learning



(1,2)-tiling

(2,2)-tiling

(L,2)-tiling

(L,4)-tiling
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Visible nodes
Hidden nodes
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(1,2)-tiling

(2,2)-tiling

(L,2)-tiling

(L,4)-tiling

Wji →   W’ji

Visible nodes
Hidden nodes

Visible nodes

Hidden nodes

Set up randomly 
from Gaussian 
distribution

Restricted Boltzmann machines and transfer learning

Wji



(1,2)-tiling

(2,2)-tiling

(L,2)-tiling

(L,4)-tiling

Wji →   W’ji Roughly a bias of this type

Restricted Boltzmann machines and transfer learning



(1,2)-tiling

(2,2)-tiling

(L,2)-tiling

(L,4)-tiling

Wji →   W’ji

Decoupling the halves 
of the system via the 
hidden layers enhances 
significantly the 
performance. 

Restricted Boltzmann machines and transfer learning



How do we implement the algorithm?

- To evaluate the energy and the gradients we take 104 samples
- To optimize we use a gradient descent algorithm (adaptive learning rate strategies

RMSProp and the learning rate of the RMSProp to 0.001
- For the Ising model, the samples are obtained by a single iteration Gibbs sampling.
- For the Heisenberg XXZ model, we use a Metropolis-Hastings sampling with exchange.

Strategy to conserve magnetization.
- We use NVIDIA Titan V GPUs

Restricted Boltzmann machines and transfer learning
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How do we implement the algorithm?

- To evaluate the energy and the gradients we take 104 samples
- To optimize we use a gradient descent algorithm (adaptive learning rate strategies

RMSProp and the learning rate of the RMSProp to 0.001
- For the Ising model, the samples are obtained by a single iteration Gibbs sampling.
- For the Heisenberg XXZ model, we use a Metropolis-Hastings sampling with exchange.

Strategy to conserve magnetization.
- We use NVIDIA Titan V GPUs

- We use twice as many hidden layers as visible ones.

- Stopping criterion. We compute the variance of “local energy”

and we stop when is less than or when the number of

epochs reaches

Restricted Boltzmann machines and transfer learning



We consider two models

Restricted Boltzmann machines and transfer learning

Ising

Heisenberg
(number conserving)

For large negative 𝐽𝐼 the Ising model is antiferromagnetic (AF) 

For large positive 𝐽𝐼 the Ising model is ferromagnetic (FM) 
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For large negative Δ the Heisenberg model is antiferromagnetic (AF) 

For large positive Δ the Heisenberg model is ferromagnetic (FM) 



We consider two models

System sizes 1D

2D

Ising

Heisenberg
(number conserving)

Restricted Boltzmann machines and transfer learning



We consider two models

We evaluate

- Efficiency: how quickly the ground state is reached

- Effectiveness: how well the ground state is represented

Restricted Boltzmann machines and transfer learning

Ising

Heisenberg
(number conserving)



For efficiency we measure time.
For effectiveness we look at a number of properties and we compare to accurate results
from Matrix Product States simulations.

We consider two models

Local magnetization 

Antiferromagnetic order

Ferromagnetic order

Restricted Boltzmann machines and transfer learning

Ising

Heisenberg
(number conserving)



We compute the time required to reach the stopping criterion, adding the time required
at previous steps.

Restricted Boltzmann machines and transfer learning



Cold start

Ising

We compute the time required to reach the stopping criterion, adding the time required
at previous steps.

Restricted Boltzmann machines and transfer learning

(L,2)  (1,2) 

(2,2)  

Gapless

Ferro

Antiferro



Let us look at the details of why one transfer learning technique is faster than the other.

We consider only Ising and we compare (1,2) vs (L,2) tiling in the ferromagmetic phase.

Restricted Boltzmann machines and transfer learning

(1,2)

(L,2)

(2,2)



Cold start

Ising Heisenberg

We compute the time required to reach the stopping criterion, adding the time required
at previous steps.

Restricted Boltzmann machines and transfer learning
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Gapless

Ferro

Antiferro

Cold start

Ising Heisenberg

We compute the time required to reach the stopping criterion, adding the time required
at previous steps.

Restricted Boltzmann machines and transfer learning

(L,2)  

(1,2) 
(2,2)  Cold start converges faster … but to a local minimum!

Quality of the state is not good!



How good are the states generated?

How close is the energy from the matrix product states value?

We consider a state for 64 spins and we double its size with different transfer learning
techniques and then we do comparisons to Matrix Product States results.
For a fair comparison, we consider the same number of epochs for all transfer techniques.

Ising

(1,2)

(2,2)

(L,2)

Restricted Boltzmann machines and transfer learning

cold
start

AF FM



How good are the states generated?

How close is the energy from the matrix product states value?

We consider a state for 64 spins and we double its size with different transfer learning
techniques and then we do comparisons to Matrix Product States results.
For a fair comparison, we consider the same number of epochs for all transfer techniques.

Ising Heisenberg

(1,2)

(2,2)

(L,2)

Restricted Boltzmann machines and transfer learning
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How good are the states generated?

How close is the energy from the matrix product states value?

We consider a state for 64 spins and we double its size with different transfer learning
techniques and then we do comparisons to Matrix Product States results.
For a fair comparison, we consider the same number of epochs for all transfer techniques.
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Not only the energy, but also the 
correlations can be predicted 
well when using the appropriate 
transfer learning



How good are the states generated?

How close is the energy from the matrix product states value?

We consider a state for 64 spins and we double its size with different transfer learning
techniques and then we do comparisons to Matrix Product States results.
For a fair comparison, we consider the same number of epochs for all transfer techniques.

(1,2)

(2,2)

(L,2)

Restricted Boltzmann machines and transfer learning

cold
start

Ising Heisenberg

Not only the energy, but also the 
correlations can be predicted 
well when using the appropriate 
transfer learning

Zoom in
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Conclusions and outlook 

Transfer learning seems to provide an effective and efficient way to study larger 
quantum many-body systems. What about frustrated Hamiltonians?     

Support

Thank you!    

Zen et al., Physical Review E 2020 



Conclusions and outlook 

Transfer learning seems to provide an effective and efficient way to study larger 
quantum many-body systems. What about frustrated Hamiltonians?     

Many lines of research at the interface between machine learning and many-body 
physics. A lot is yet to be done 

• What are the limits of efficiency and effectiveness in finding ground states? 
• Are NNQS the way to go for 2D and 3D systems?    
• What are the limits of time evolution?    
• Can we use more physically-inspired architectures and optimizers so as to

improve the performance?   
• Can physics teach us how to do better neural networks for any sort of problems? 
• Can physics help us to interpret neural networks better?  

Thank you!    

Zen et al., Physical Review E 2020 

Support


